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Abstract The realistic representation of convection in atmospheric models is paramount for skillful
predictions of hazardous weather as well as climate, yet climate models especially suffer from large
uncertainties in the parameterization of clouds and convection. In this work, we examine the use of
machine learning (ML) to predict the occurrence of deep convection from a state-of-the-art atmospheric
reanalysis (ERA5). Logistic regression, random forests, gradient-boosted decision trees, and deep neural
networks were trained with lightning data to predict thunderstorm occurrence (TO) in Central and
Northern Europe (2012–2017) and in Sri Lanka (2016–2017). Up to 40 input variables were used,
representing, for example, instability, humidity, and inhibition. Feature importances derived for the
various models emphasize the high importance of conditional instability for deep convection in Europe,
while in Sri Lanka, TO is more strongly regulated by humidity. The Precision-Recall curve indicates more
than a twofold improvement in skill over convective available potential energy for short-term (0–45 min)
predictions of TO in Europe by using neural networks or gradient-boosted decision tree and a larger
improvement in the tropical domain. The diurnal cycle of deep convection is closely reproduced,
suggesting that ML could be used to trigger convection in climate models. Finally, a strong relationship
was found between area-mean monthly TO and ML predictions, with correlation coefficients exceeding
0.94 in all domains. Convective available potential energy has a similar level of correlation with monthly
thunderstorm activity only in Northern Europe. The results encourage the use of reanalyses and ML to
study climate trends in convective storms.

1. Introduction
Hazards associated with convective weather (e.g., lightning, large hail, tornadoes, downbursts, and heavy
precipitation) cause several billions of euros worth of damage in Europe on a yearly basis (Dotzek et al.,
2009). Besides the high direct impact of convective weather on society, convection is also an important role
in Earth's climate by producing clouds which affect the radiation budget and transport heat and moisture in
the vertical. It is therefore paramount to represent convective processes accurately in atmospheric models;
unfortunately, this also happens to be a difficult task. Global and regional climate models (GCMs and RCMs)
are known to suffer from many unrealistic aspects in the simulated convection. Systematic biases have been
found in the intensity distribution (Kyselý et al., 2015) and diurnal cycle of precipitation (Dirmeyer et al.,
2011), the vertical structure of convective heating and moistening (Herman & Kuang, 2013), and cloud
cover (Cesana & Waliser, 2016). Such errors are known to have a major impact on the overall skill of GCM
simulations (Sherwood et al., 2014).

Recently, it has become possible to circumvent many of these issues by running RCMs on resolutions where
deep convection is at least partially resolved, whereby the deep convection scheme can be turned off. This is a
significant development which has led to clear improvements in, for example, the statistics of simulated con-
vective precipitation, the shallow-to-deep convection transition, and in convective aggregation (Ban et al.,
2014; Kendon et al., 2017; Prein et al., 2015). A recent example is Knist et al. (2018), who managed to run
three 12-year convection-permitting simulations over central Europe. However, the computational cost of
such simulations is enormous, and it will take many years before larger domains and longer time periods
can be used.

Studies on climate change impacts on convective weather are also hampered by deficiencies in
convective-parameterizing models. Such studies have generally focused on severe convective storms in the
United States and used the combination of convective available potential energy (CAPE) and wind shear as
a proxy for these storms (Brooks, 2013). Modeling studies have pointed toward an increased frequency of
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convective storms in the future as a result of robust increases in CAPE across both the United States and
Europe (Púčik et al., 2017). However, there is still much uncertainty regarding changes in wind shear in
many regions, as well as storm initiation (Allen, 2018). One alternative is using the observational record;
unfortunately, systematic records of convective weather tend to be spatially or temporally limited and/or
inhomogeneous. In Finland, records exist since 1887 as manual thunderstorm day observations, since 1960
using automatic lightning flash counters, and since the early 1980s as lightning location system observa-
tions (Mäkelä et al., 2014b). Such changes in the observing system, seen also in other countries, make the
record unreliable for the estimation of climate trends (Brooks, 2013).

In light of these problems, what is the way forward? The convective parameterization issue will stay relevant
for years to come, and progress thus far has been slow despite considerable efforts using different theoreti-
cal frameworks (Yano et al., 2015). An alternative approach, which could offer a breakthrough, is to learn
the complex nonlinear relationships governing subgrid convection directly from observational and numer-
ical modeling data. This can be done using machine learning (ML) algorithms such as neural networks
(NNs). Papers published while this work was finalized suggest a sudden jump in interest in the use of ML
to parameterize moist convection and other subgrid processes in climate models (Brenowitz & Bretherton,
2018; Gentine et al., 2018; Gorman & Dwyer, 2018; Rasp et al., 2018). One approach is to train a ML param-
eterization using output from a cloud-resolving model (CRM) embedded in a climate model, also known
as a superparameterization. Gentine et al. (2018) demonstrated this method using idealized aquaplanet
simulations and obtained promising results in terms of skillful predictions of convective heating, moisten-
ing, and radiative features of the superparameterization. In a similar study by Rasp et al. (2018), multiyear
GCM simulations incorporating NN-based parameterizations were shown to closely reproduce the mean
climate of CRM simulations, as well as key aspects of variability. However, some loss of variability was
seen in both of these studies, resulting from NNs being inherently deterministic. A further drawback of
machine-learned parameterizations is that physical properties on various scales may not be conserved unless
explicitly accounted for. Brenowitz and Bretherton (2018) was able to develop a numerically stable NN
parameterization by minimizing the prediction error over multiple time steps rather than a single one, but,
for example, column-integrated moist static energy was not conserved.

We propose that a promising application for ML may lie in the “trigger function” which activates the deep
convective scheme in GCMs. Triggering convection at the right time and place is important for the realis-
tic simulation of atmospheric variability, yet existing trigger functions tend to be simplistic by design, using
near-arbitrary thresholds and ignoring important processes. As a result, convection is often triggered too
easily (Suhas & Zhang, 2014). Inadequate triggering criteria have been linked to unrealistic simulations of,
for example, the diurnal cycle of convection (Xie, 2004), the Madden-Julian Oscillation (Lin et al., 2008),
and the intertropical convergence zone (Liu et al., 2009b). The nonlinearity and possible threshold behavior
(Houston & Niyogi, 2007; Yano et al., 2012) of deep convective initiation makes this problem a good
candidate for machine-learned classification models, which predict probabilities and therefore offer stochas-
ticity. An ML-based stochastic convective trigger could, for example, be used alongside existing convective
schemes in GCMs.

In this paper, we use state-of-the-art reanalysis and lightning data to evaluate the skill of ML models to
predict the occurrence of deep convection in different climates. This serves as a data-rich platform to test
the hypothesis that ML can greatly improve the prediction of deep convection. Lightning activity can be
monitored accurately around the globe using remote sensing (Ávila et al., 2010) and is closely related to
the vertical velocity and cloud depth of convective clouds (Williams, 2001). Reanalyses, meanwhile, com-
bine millions of historical observations with modern data assimilation and numerical modeling to give a
“best guess” of the past atmospheric state in a consistent manner. Reanalyses, NNs, and lightning data were
previously combined in Ukkonen et al. (2017), where categorical thunderstorm forecasts for Finland using
shallow NNs had substantially higher skill compared to any single predictor.

We train logistic regression, decision tree ensembles, and deep NNs to predict the occurrence of thunder-
storms from parameters related to mainly instability, inhibition, and moisture. Feature scores are used to
explore factors regulating thunderstorm occurrence (TO) in the tropics and middle/high latitudes. The clas-
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sifiers are evaluated in terms of prediction of individual events, the diurnal cycle, and the correlation with
observed thunderstorms on larger scales.

Section 2 describes the data, preprocessing, ML algorithms, and experiment workflow. Model training and
optimization is detailed in section 3. This is followed by evaluation (section 4) and a discussion on the envi-
ronmental factors governing deep convection in different climates and on different scales (section 5). Finally,
we offer some concluding remarks and discuss the implications of our findings (section 6).

2. Data and Methodology
2.1. Data
Reanalysis and lightning data from two European domains (Northern and Central Europe) with high-quality
lightning location networks were obtained for the convectively active season (May–August) spanning
2012–2017. Data were also acquired for a tropical domain (Sri Lanka, January–December 2016–2017) in
order to study differences between tropical and middle- to high-latitude convection and the potential for
developing a global scheme. The domains are depicted in Figure 5.
2.1.1. ERA5
ERA5 is the fifth generation global reanalysis product by European Centre for Medium-range Weather Fore-
casts (ECMWF), set to replace ERA-Interim and cover the period from 1950 to present (Hersbach & Dee,
2016). ERA5 features a number of changes from ERA-Interim, with a key improvement being a much higher
resolution: hourly analysis fields are available at a horizontal grid spacing of 31 km on 137 vertical levels.
This should be sufficient to resolve mesoscale structures important for convective initiation. The Earth sys-
tem model used in ERA5 is the Integrated Forecast (IFS) Cycle 41r2, which in comparison with the older
IFS version 31r2 represents many developments in physics parameterizations and data assimilation meth-
ods. For example, ERA5 uses a variational bias scheme not only for satellite radiances as in ERA-Interim
but also for ozone, aircraft, and surface pressure data. ERA5 data were acquired on longitude-latitude grids
using different longitudinal grid increments for each of the three domains in order to have a roughly 28-km
horizontal grid spacing everywhere. Training data were obtained at 2-hourly time step, resulting in nearly
28 million pseudo-soundings for Europe.

We briefly evaluated the quality of ERA5 pseudo-soundings by comparing values of CAPE derived from
ERA5 and radiosonde data. The 00 and 12 UTC soundings from five radiosonde stations in Northern Europe
(N-EUR) and 12 stations in Central Europe (C-EUR) were obtained for 2012–2017, most of them located in
Sweden and Germany, respectively. The linear correlation between Mixed Layer CAPE derived from ERA5
pseudo-soundings and radiosonde measurements was 0.78 in C-EUR and 0.74 in N-EUR. The agreement
is fairly good given that the stations in N-EUR (C-EUR) were located on average 9.5 (8.3) km from the
reanalysis grid points they were compared to. Furthermore, the correlation between observed TO (section
2.2.1) and CAPE was similar for ERA5 and radiosonde data in C-EUR (r = 0.21–0.22). In N-EUR, sound-
ing CAPE did have a stronger correlation with observed thunderstorms than ERA5-CAPE (0.28 and 0.21,
respectively), which could imply a lower quality of ERA5 soundings in this region. The predecessor of ERA5,
ERA-Interim, was compared extensively to sounding data in Europe by Taszarek et al. (2018). While bound-
ary layer moisture and midtropospheric lapse rates were in general described very well by ERA-Interim,
convective parameters such as most unstable CAPE and mixed-layer CIN still exhibited large relative errors
in a Central European domain (35.2% and 33.9%, respectively).
2.1.2. Lightning Data
Lightning observations were used to assess the occurrence of deep, moist convection. The advantages of
lightning observations are a very high detection efficiency and spatial accuracy, as well as a large spatial
coverage. In the European domain, data from two lightning location networks were obtained. The Nordic
Lightning Information System (Mäkelä et al., 2014b), which covers the Nordic and Baltic countries in a
combined network since 2002, is used for the Northern European domain. For the Central/West Euro-
pean domain, data were received from the EUropean Cooperation for LIghtning Detection network (Schulz,
2005), which is a collaboration among many national lightning networks in Europe and also encompasses
the Nordic Lightning Information System network. In Sri Lanka, we have used data from the Global Light-
ning Dataset 360 of Vaisala that has been noted to have relatively homogeneous global performance (e.g.,
Pohjola & Mäkelä, 2013) and has been used in previous studies in Asia (Mäkelä et al., 2014a). Because our
primary interest is on the yes/no occurrence of lightning, we have considered here all the located lightning
events, that is, either cloud-to-ground (CG) or intracloud (IC) flashes in our analysis. Differences between
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the data sets regarding the detection efficiency of IC flashes should not have a significant impact on the
results given that, for example, a majority of midlatitude continental convective systems are associated with
at least one CG flash (MacGorman et al., 2011).

2.2. Preprocessing Data
2.2.1. Predictand
To develop a classification model for predicting TO, class labels first need to be generated by associating
lightning observations with sounding data by some spatiotemporal criteria. The choice of criteria is nontriv-
ial and may have a large impact on results. In Ukkonen et al. (2017), ERA-Interim pseudo-soundings were
labeled as “thundery” if at least one lightning flash was observed within the 0.75◦ × 0.75◦ grid box (2,100 −
3,100 km2) during the 6-hr period after the analysis time. Other proximity criteria used in literature include
within a 0.75◦ × 0.75◦ grid box and 0–2 hr of pseudo-sounding (Westermayer et al., 2017) and within 125
km and −2–6 hr of sounding (Taszarek et al., 2017). The former of this studies selected the temporal criteria
based on 2 hr being the typical timescale for a thunderstorm to advect across a grid box assuming a typical
wind of 10–15 m/s. We follow the same reasoning, which leads to a roughly 45-min time window for typ-
ical storms to leave the higher-resolution grid cells. Samples were consequently assigned to the thundery
class if at least one CG or IC flash was observed within the 28 × 28-km grid cells within 45 min after the
analysis. This strict criteria should lead to pseudo-soundings being highly representative of preconvective
environments but results in a low ratio of thunderstorm events to nonevents.
2.2.2. Predictors
Model level data were acquired at high vertical resolution in order to resolve thermodynamically important
structures such as capping inversions. Temperature and specific humidity were obtained on 42 vertical levels
and wind fields on eight levels, emphasizing the low-to-middle troposphere in both cases. While it is possible
to predict thunderstorms directly from vertical profiles, in our case this would entail over 100 inputs and
would likely require deep NNs capable of transforming the temperature and humidity data into higher level
representations associated with, for example, buoyancy and saturation. An alternative is to manually extract
physically meaningful features from the vertical columns, for example, variables such as CAPE which are
known to be important for convection and thereby reduce the dimensionality of the data. This process of
leveraging domain specific knowledge and human insight is known as feature engineering. We use this
approach as it enables the use of simpler models and facilitates model interpretation.

Unfortunately, this results in the difficult and time-consuming exercise of transforming soundings into a
set of convective predictors which is not overly large and redundant and yet does not omit important infor-
mation. We decided to first generate a large number of convective parameters from model level data. To
do this in a flexible and computationally efficient manner, we wrote a Julia package (https://github.com/
peterukk/ConvectiveIndices.jl) for calculating convective indices and thermodynamic variables from atmo-
spheric profiles. Julia is a modern high-level, high-performance dynamic programming language designed
for numerical computing. For computational reasons, parameters such as CAPE and Lifted Index are by
default calculated using a 𝜃e formulation

CAPE = g∫
zEL

zLFC

(
𝜃e,i − �̄�es

�̄�es

)
dz (1)

LIi = 𝜃es,500 − 𝜃e,i (2)

where g is the acceleration of gravity, 𝜃e is the equivalent potential temperature, which is conserved during
a pseudo-adiabatic ascent, the subscripts i and 500 refer to the initial parcel level and 500-hPa level, �̄�es
is the environmental saturated equivalent potential temperature, zLFC is the level of the free convection,
and zEL is the equilibrium level. LFC and EL are here taken as the lowest level where the term inside the
parenthesis is positive and the highest level where the term is negative, respectively. Furthermore, only
positive contributions to the integral are included. These parameters were found to perform just as well as
thunderstorm predictors as the traditional formulations of CAPE and Lifted Index (see, e.g., Ukkonen et al.,
2017).

Having calculated numerous convective parameters, candidate predictors were evaluated mainly by using
thunderstorm probability tables (Ukkonen et al., 2017). These tables depict the binned empirical thunder-
storm probability as a function of two parameters. A clearly changing thunderstorm probability as a function
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Table 1
List of Input Variables Used in the Study

Acronym Description
blh Boundary layer height
CAPEi Convective available potential energy using the 𝜃e approximation (equation (1)). Parcels i used in this study are

the surface parcel (SFC), a mixed-layer parcel based on the mean conditions in the lowest 50 hPa (ML), and
the most unstable parcel in the lowest 350 hPa (MU), which is furthermore mixed over a 50-hPa depth

CAPECINi CAPECINi = g ∫ zLCLi−250hPa
zLCLi

(
𝜃e,i−�̄�es

�̄�es

)
dz, where i refers to the parcel (MU or ML) and both negative (CIN) and

positive contributions (CAPE) are included, and the LCL is the lifted condensation level

CINLCL,i CINLCL,i = g ∫ zLCLi
zi

(
𝜃e,i−�̄�es

�̄�es

)
dz, where i refers to the parcel (MU or ML) or parcel level

d2m 2-m dew point temperature
DLS Bulk wind shear between 10-m AGL (above ground level) and model level 94 (roughly 6-km AGL)
hcc High cloud cover
ie Instantaneous moisture flux
ishf Instantaneous surface sensible heat flux
lcc Low clover cover
LIi Lifted Index using the parcel i (MU, ML, or SFC). See equation (2)
LLS Bulk wind shear between 10-m AGL and model level 118 (roughly 1-km AGL)
mcc Medium clover cover
MRH300–600 Mean relative humidity (%) between 300 and 600 hPa
MRH600–800 Mean relative humidity (%) between 600 and 800 hPa
MRHALCL,i Mean relative humidity (%) between the LCL and 250 above the LCL, using the parcel i (MU or ML)
msl Mean sea level pressure
MLS Bulk wind shear between 10-m AGL and model level 105 (roughly 3-km AGL)
ULS Bulk wind shear between model level 105 (roughly 3-km AGL) and model level 94 (roughly 6-km AGL)
sp Surface pressure
soiltemp Soil temperature level 1
soilwater Volumetric soil water layer 1
pLCLMU Lifted condensation level (hPa) of the most unstable parcel
t2m 2-m temperature
tciw Total column cloud ice water
tcw Total column water
tcwv Total column water vapor
Vmid Mean of the horizontal wind speeds at model level 105 (roughly 3-km AGL) and 94 (roughly 6-km AGL)
VIHMClow Vertically integrated horizontal mass convergence in the lowest 300 hPa
vimfc Vertical integral of divergence of moisture flux
vimt Vertical integral of mass tendency
vidfw Vertical integral of divergence of cloud frozen water flux
wmid Mean of the vertical velocities at model level 105 (roughly 3-km AGL) and 94 (roughly 6-km AGL)
zBCL Height of the buoyant condensation level (BCL), which quantifies atmospheric preconditioning to

surface-triggered convection (Tawfik & Dirmeyer, 2014). Calculated using equation 1 in Tawfik et al. (2017)

Note. Variables which are abbreviated using only lowercase letters are ECMWF surface level parameters (the acronym may have been changed). The remaining
variables have been calculated from model level data.

of a candidate predictor for constant values of a baseline variable such as CAPE, or the output of an existing
ML model, was interpreted as the parameter having predictive power. Many ERA5 surface parameters were
also examined. Ultimately, 40 variables were selected from an initial pool of over 60 candidate parameters
(not listed). These parameters are defined in Table 1. Feature redundancy was a secondary consideration in
the screening process, which means strong correlations between variables can be found (section 3.1), which
is later considered in a feature selection experiment (section 3.2.2).
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2.3. Classifiers
2.3.1. Logistic Regression
As a baseline multivariate model, we use logistic regression (James et al., 2013). Despite its simplicity, it often
performs well on many real-world problems, including nonlinear problems in atmospheric science such as
convection. For example, logistic regression outperformed random forests (RFs) in distinguishing between
lightning and nonlightning days in Bates et al. (2018) and in predicting small-scale convective initiation from
Numerical Weather Prediction (NWP) model and geostationary satellite data in Mecikalski et al. (2015).
2.3.2. Decision Trees
Two ML algorithm based on decision tree ensembles are included: RFs and boosted decision trees. These
algorithms differ mainly on how the ensembles are generated. In a RF, decision trees are trained indepen-
dently so that a random subsection of the data is used to train each tree. Furthermore, the trees are grown
so that random subsections of features are considered at each node and the feature resulting in the best split
is chosen. Often very deep trees are grown, resulting in individual trees suffering from overfitting and high
variance. However, because each tree is fit to a different subsection of the data, the variance is reduced by
averaging the predictions.

Boosting is an ensemble technique of training models sequentially, where each model aims to minimize the
prediction errors of the previous model. The model is usually a “weak” learner, that is, a fairly simple model
that does not perform well on its own. This framework of iteratively improving weak learners has been found
to work particularly well for decision trees. After a suitable number of boosting iterations (which can be
determined, e.g., by cross-validation), the final prediction is a weighted mean of all models. In this work, we
use a LightGBM (LGBM), which is a computationally efficient Gradient Boosting Decision Tree algorithm
(Ke et al., 2017).

RFs have been used with good results in many complex weather prediction applications, including predict-
ing the initiation of mesoscale convective systems (Ahijevych et al., 2016), classifying storm types (Gagne et
al., 2009), and recently to emulate a traditional convective parameterization in GCM simulations (Gorman
& Dwyer, 2018). Gradient Boosting Decision Tree seems to have attracted little attention in atmospheric sci-
ence but have been used successfully, for example, in solar energy prediction (McGovern et al., 2015). These
models have proven highly effective for many real-world classification and regression problems, featuring
in many winning solutions in data science competitions (Nielsen, 2016).
2.3.3. NN
For a technical description of NNs, the reader is referred to Chapter 5 in Bishop (2006). NNs are a class of
ML algorithms which map inputs to outputs by one or more layer of nodes (also called neurons) connected
to each other by nonlinear functions with adjustable parameters (weights). Thus, the input-output mapping
represents a series of adjustable nonlinear transformations. During network training, the goal is to find a
set of weights which minimize some measure of difference between the NN output and the training labels.
In regression models, root-mean-square error can be used as the loss function. In a classification model,
cross-entropy error should be preferred (equation 4.90 in Bishop, 2006). The loss function is then minimized
using some variant of gradient descent, whereby a step, the magnitude of which is controlled by the learning
rate, is taken in the direction of the steepest descent (the negative of the gradient) on each training iteration.
The learning rate can be held constant or changed automatically after each epoch (a pass through all training
data) by using an adaptive learning method. A commonly used optimizer is Adam, an adaptive stochastic
gradient descent (SGD) algorithm with momentum (Kingma & Ba, 2014).

NNs can approximate any smooth nonlinear function (Hornik et al., 1989) but are difficult to interpret and
computationally expensive to train. They can also be difficult to tune (e.g., finding a suitable complexity by
adjusting the number of layers and neurons).

2.4. Metrics
The training data are characterized by a very low fraction of thunderstorm events (roughly 1% in Europe and
1.2% in Sri Lanka). Our problem is therefore a highly imbalanced two-class classification problem where
positive samples, corresponding to detected lightning, are vastly outnumbered by negative samples. Class
imbalance can be a serious issue when training classifiers, as a traditional performance metric such as accu-
racy could in this case be maximized by simply predicting all examples as the majority class (Liu et al.,
2009a). Furthermore, misclassifying the minority class is often a more serious issue than misclassifying the
majority class. For example, failing to issue a severe weather warning when one occurs (a false negative) is
likely to have more serious consequences than issuing a false alarm (false positive).
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Ultimately, if the costs corresponding to the four possible outcomes of yes/no forecasts are unknown, no
scalar metric can be used to measure skill fully or optimally (see Wilks, 2006, section 7.2.3). A common way
of evaluating binary classifiers is by plotting the receiving operating characteristic (ROC) curve. The ROC
curve depicts the true positive rate against the false positive rate at different threshold values used to convert
probabilistic model output into binary predictions. However, for class-imbalanced problems, the ROC curve
can be misleading and a better option is to use the Precision-Recall (PR) curve, which depicts the true positive
rate (recall) against precision (Saito & Rehmsmeier, 2015). We use the area under the PR-curve (PR-AU)
to summarize model performance and optimize hyperparameters by maximizing this score, or the nearly
equivalent average precision, with respect to a subset of the data withheld for model validation. The average
precision of the validation data (valAP) is also used for early stopping, a generalization method whereby
model training is stopped when the validation error begins to increase (a sign of the model overfitting to the
training data).

2.5. ML Workflow
ML models for predicting TO in Europe and Sri Lanka were developed according to the procedure outlined
below, aimed at tackling class imbalance and maximizing model performance.

1. The European data sets (May–August 2012–2017) were merged and the data divided into training (4/6),
validation (1/6), and testing (1/6) subsets. Training data are used for model training, that is, fitting internal
model parameters while validation data are used for optimizing model hyperparameters. The test data
are used to obtain an unbiased estimate of performance. The data were divided in an interleaved manner:
2014 was reserved for testing, while the May, June, July, and August months were withheld from 2012,
2013, 2015, and 2017, respectively, for validation. The remaining data were used for training. Data from
Sri Lanka (January–December 2016–2017) were similarly divided into training (2016), validation (even
numbered months from 2017), and testing (odd numbered months from 2017) subsets.

2. To reduce class imbalance, the majority class (null cases with no lightning) in the training data was
undersampled using an informed undersampling method available in Scikit-learn called BalanceCascade
(Liu et al., 2009a). The goal was to undersample easily predictable null cases which dominate the data,
for example, samples with zero CAPE. Essentially, a simple classifier is first trained (here, a Scikit-learn
gradient-boosting classifier using LIMU, tciw, MRH600–800, and CAPECINMU as inputs) and correctly pre-
dicted majority samples are then removed according to a user-specified ratio of minority to majority
samples. The following ratios were tested: 1–7, 1–9, and 1–20. Using a 1 to 9 ratio (10% thunderstorm fre-
quency) led to the highest validation performance using LGBM (section 3.2). This reduced the training
data set from 18.5 million to 1.9 million samples in Europe. Training data for Sri Lanka were also under-
sampled, but since almost all samples had positive CAPE, we chose to discard only roughly half of all
null events (resulting in 1.3 million samples and 2.5% event probability).

3. RFs and logistic regression models were trained using all 40 input variables.
4. Boosted decision trees were trained using LGBM. First, Bayesian optimization was used to tune model

hyperparameters. Recursive feature selection using the optimized model was then carried out in order to
prune redundant features from the 40 initial features.

5. NNs were trained using the reduced feature set from the previous step and Bayesian optimization to tune
the model architecture. Before training, all input data ware converted to a range between 0 and 1.

6. Data from Europe and Sri Lanka were pooled together, and NNs were trained to predict TO globally.
7. Model outputs were calibrated using Platt's scaling in order to correct for skewed class probabilities result-

ing from undersampling. This method is based on fitting a logistic regression model to the classifier
outputs and true labels. The full training set was used to fit the model.

8. Models were evaluated using independent test data.

3. Model Training and Optimization
In ML, internal model parameters are learned directly from data during training. However, models also
have various hyperparameters which control the complexity and regularization. These parameters need to
be specified in advance and can strongly affect performance. In this section, we describe model training
and hyperparameter optimization. Logistic regression and RFs were developed using the Scikit-learn ML
library for Python (Pedregosa et al., 2011), while NNs were developed using Keras, a deep learning library
for Python (https://keras.io/).
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Figure 1. Correlation matrix depicting intercorrelation of features (lower left corner) and feature importance in a random forest model for Europe (blue bars)
and Sri Lanka (red bars). The correlation matrix was computed using the training data from Europe.

3.1. Logistic Regression and RFs
Separate logistic regression models were fitted to the training data from Europe and Sri Lanka. Due to a
large number of predictors, the Lasso regularization method (Ch. 6.2.2. in Osuri et al., 2017) was used with
logistic regression to constrain the model to use an optimal subset of predictors. Five different values for the
tuning parameter C, the inverse of regularization strength, were tested (0.01, 0.1, 1, 10, and 100). C = 10 led
to the best performance in both domains with a valAP of 0.193 in Europe and 0.152 in Sri Lanka.

Next, we trained RFs, which are also relatively easy to tune. The most important hyperparameter is the
maximum depth of trees. We used fully grown trees as restricting the tree depth degraded performance based
on a quick test. Regarding the number of trees in the ensemble, it is considered good practice to simply
grow as many trees as computationally feasible. An ensemble of 800 trees was found to be sufficient for
obtaining good performance, with minimal gains for larger forests. All other hyperparameters were kept at
their default value in Scikit-learn. RFs trained in this manner had valAP of 0.245 in Europe and 0.185 in
Sri Lanka. A practical drawback of RF is a large memory requirement owing to the large tree depth and
ensemble size; here the stored models took several gigabytes of disk space.
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Table 2
The Hyperparameters of LGBM and Neural Networks Which Were Tuned Using Bayesian Optimization or by Hand for Selected NN Parameters, by Maximizing
valAP

Hyperparameter Explored space Selected value
LGBM hyperparameters optimized using Bayesian optimization

Maximum tree depth 3–25 13
Maximum number of leaves 15–100 81
Minimum data in leaf 20–120 64
Feature fraction 0.3–1 0.472
Minimum split gain 0.01–0.2 0.160
Minimum child weight 10–2,000 383.7

Neural network hyperparameters optimized using Tree Parzen Estimators
Number of layersa 2, 3, 4, 5 3
Neurons in each layera 30, 60, 90, 120, 150 120, 60, 30
Dropout rate after each layera 0.0–0.4 0, 0.09, 0.15

Neural network hyperparameters tuned by hand
Hidden neuron initialization He, Glorot Glorot
Hidden layer activation function Exponential, Scaled Exponential, and Rectified Linear Unit (ELU, SELU, ReLU) ELU
Optimizer (learning rate) Adam (0.001), SGD with momentum (0.001, 0.01, 0.05, 0.1) Adam
Class weight 1:1, 1:5, 1:10, 1:100 1:1
Batch size 256, 512, 1024 1024

Note. The explored range of parameters and the selected optimal values for Europe are given.
aIncluding the input layer and excluding the output layer. LGBM = LightGBM; NN = neural network.

A benefit of decision tree methods is that they are relatively easy to interpret by quantifying how much each
feature in the model contributes to the overall predictive performance. In Scikit-learn, feature importance
is computed as the associated (normalized) total reduction of the criteria used to measure the quality of a
split, which in this case is the Gini impurity (Louppe et al., 2013). The feature importances for Europe and
Sri Lanka are depicted as a bar chart in Figure 1. The results vary greatly with domain. In Europe, traditional
instability measures such as CAPE and Lifted Index are associated with very high feature importance, with
most of the predictive performance of the model brought by these few features. In Sri Lanka, these predictors
are ineffective, and no single feature scores much higher than the rest. Interestingly, the most important
feature for this domain is reported as soil temperature, which also came second in a boosted tree model.
Whether this result is physical cannot be confirmed, but the significance of land surface conditions on the
initiation of deep convection over the Indian Monsoon region has been noted previously in Osuri et al.
(2017).

3.2. Boosted Trees
3.2.1. Hyperparameter Selection
The LGBM model has a large number of hyperparameters, the optimization of which using brute force is
unfeasible. In order to find a good set of parameters in as few iterations as possible, we employ a Python
implementation of Bayesian optimization (https://github.com/fmfn/BayesianOptimization) in which the
objective function is modeled as a Gaussian process and the query points of the feature space are chosen
in an informed manner (Snoek et al., 2012). The Bayesian optimization was initialized with 20 random
points in the feature space and ran for 15 iterations. Only the European data were used for optimizing the
model. The explored hyperparameter space and resulting optimal values are presented in Table 2. Note that
the number of boosting iterations could be ignored by using early stopping (setting it at a high number).
The optimized model had a maximum tree depth of 13 and a maximum of 81 leaves in each tree. Using the
default learning rate (0.1), it took roughly 200 boosting iterations and only a few minutes of GPU running
time to reach a maximum in valAP (0.271).
3.2.2. Feature Selection
The correlation matrix (Figure 1) revealed many strong pairwise correlations among features. Since remov-
ing redundant features will reduce unnecessary complexity and can occasionally improve performance,
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we decided to use LGBM to examine the impact of removing features with low importance and/or strong
correlation with other features.

Based on Figure 1, removing the following features was tested one by one: LISFC, CAPESFC, ULS, DLS, lcc,
ie, MRHALCL,ML, MRH300–600, CINLCL,MU, and VIHMClow. In addition, we tested transforming two features:
2-m dew point temperature (d2m) into dew point depression and total column water (tcw) was subtracted
with total column cloud ice water and total column water vapor, resulting in the sum of cloud liquid water,
rain, and snow. On each feature trial 10 LGBM models were trained on the European data using different
random initializations. A change was deemed beneficial and made permanent if it resulted in either the
mean or the maximum valAP increasing or neither decreasing by more than 0.3%. This simple experiment,
which did not explore different permutations of features, led to the removal of four redundant features (SLI,
CAPESFC, CINLCL,MU, and DLS) and transforming d2m and tcw into new features. As a result, the maximum
valAP increased from 0.271 to 0.275, with most of the improvement coming from feature transformations.
Finally, an ensemble of 10 LGBM models with the same hyperparameters and inputs was trained on data
from Sri Lanka. The best model had a validation score of 0.205 in this domain.

3.3. NNs
3.3.1. Hyperparameter Tuning
We use feedforward NNs for predicting thunderstorms, testing both shallow and deep NNs. To tune the
NN architecture, we utilized the Python package Hyperopt (through the Keras wrapper Hyperas), which is
based on a Bayesian optimization technique using Tree Parzen Estimators (Bergstra et al., 2011). The num-
ber of hidden layers, hidden neurons in each layer, and the strength of dropout regularization (Srivastava
et al., 2014) were optimized using Hyperopt, while remaining hyperparameters were tuned manually. The
explored hyperparameter space and selected values for Europe are given in Table 2. Architecture optimiza-
tion was carried out separately for Sri Lanka, where the best model was also a deep NN with three hidden
layers but with more hidden neurons in each layer. The valAP of the optimized model in Europe (Sri Lanka)
was 0.277 (0.202) and therefore similar or slightly better compared to boosted decision trees.
3.3.2. A Global Model
As a final experiment, we pooled the training data from Europe and tropics together to see if a “global” model
can be developed which performs better than models trained for specific domains. The data were aggregated
so that the training and validation data sets used previously for each domain were simply merged. As a
result, 41% of all training data but only 15% of positive samples are from Sri Lanka. The model architecture
was optimized once again with Hyperopt and resulted in a more complex model with four hidden layers.

Once trained, the model was evaluated separately for each domain using the validation data from these
regions. The global NN had a valAP of 0.270 in Europe and 0.204 in Sri Lanka. The performance was there-
fore slightly worse in Europe, but incrementally higher in Sri Lanka, compared to models trained previously.
Given that tropical and middle-/high-latitude convection differ in many respects, the lack of improvement
is not surprising. The input variables are furthermore likely to suffer from domain-dependent errors and
biases which makes this a difficult goal. The similar level of performance for the global and specialized mod-
els should be considered at least a partial success; it is plausible that the new model would generalize well
to climates in between the two regions.

4. Evaluation
4.1. Classifier Skill
To evaluate model skill for the purposes of forecasting, nowcasting, and triggering convection in large-scale
models, we consider individual events of observed and predicted TO using hourly test data. Model skill is
summarized in Figure 2 by using the areas under the PR and ROC curves, which are two complementary
measures of skill obtained for a range of decision thresholds. In this evaluation we have included three
traditional convective trigger schemes: regular (nondiluted) CAPE, dilute CAPE, and dilute dCAPE, which
were previously evaluated alongside other schemes in Suhas and Zhang (2014). All three parameters were
calculated using the most unstable parcel in the lowest 350 hPa and further mixed over a depth of 50 hPa
for regular CAPE. Dilute CAPE accounts for dilution of the updraft by mixing entropy properties using
a constant fractional entrainment rate (Neale et al., 2008). Finally, dCAPE refers to CAPE generation by
large-scale advection. By using PR and ROC curves, the trigger parameters are not just evaluated at a single
threshold, whose optimal values are in reality often domain dependent but are fixed in large-scale models
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Figure 2. Area under the precision-recall (PR) and receiving operating characteristics (ROC) curves for different
classifiers in Northern Europe (N-EUR), Central Europe (C-EUR), Sri Lanka (SRI), and a subdomain of the latter over
land (SRI-LAND), obtained using independent test data.

(e.g., in the Community Atmosphere Model version 5, convection is triggered when dilute CAPE exceeds 70
J/kg).

Among the traditional parameters, regular CAPE performs relatively well in Europe but not Sri Lanka, and
dilute dCAPE has poor performance everywhere. Our results seem incongruous with Suhas and Zhang
(2014), who found the best performance for dilute dCAPE. However, the authors used different measures
of skill, for example, the Equitable Threat Score. In our analysis dilute dCAPE had a higher maximum
Equitable Threat Score than dilute CAPE in Sri Lanka (0.062 and 0.045, respectively; not shown) despite
AU-ROC being much lower. Furthermore, we use lightning occurrence as the predictand, while previous
evaluations have used precipitation.

The statistical models demonstrate much higher skill than any traditional parameter. Of these, NN and
LGBM perform the best in all domains and have very similar skill. For conciseness we use only LGBM in
further evaluation, choosing the simpler model of the two. In all figures presented hereafter, very similar
results were obtained by using NNs instead of LGBM (not shown).

The low values of AU-PR relative to AU-ROC are explained by ROC being insensitive to the probability of
false alarm (POFA), that is, the ratio of false alarms to all “yes” forecasts, which is in this instance high if
a high recall (probability of detection) is also desired (Figure 3). The low precision (1-POFA) arises in this
case from a very strict definition of what constitutes a thunderstorm event. For instance, in many cases a
thunderstorm may be predicted but lightning is observed only after the 45-min window or in an adjacent
grid cell, leading to a false alarm. In any case, the improvement over CAPE is substantial; for instance, if
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Figure 3. Precision-Recall curves for various classifiers using the test data from Europe. PR = Precision-Recall; CAPE
= convective available potential energy; LGBM = LightGBM.

a probability of detection of 0.5 is desired, the probability of making a false alarm is more than doubled if
CAPE is used instead of LGBM (Figure 3). The linear correlation coefficient between TO and model output
likewise indicates a large improvement over traditional indices, reaching 0.37 for the LGBM output but only
0.22 for CAPE.

In Sri Lanka, the increase in skill brought by ML was even larger. While the scores were lower across the
board compared to Europe, this was due to a large proportion of sea to land (Figure 5) and the skill being
lower over sea. When considering a subset of the domain with mostly land, LGBM slightly outperformed
NN and had a AU-PR (AU-ROC) of 0.320 (0.939). The best traditional parameter was again dilute CAPE
with an AU-PR (AU-ROC) of 0.071 (0.803); although dilute dCAPE was better according to AU-PR (0.078),
it received a much lower AU-ROC (0.652). Regular CAPE had no discernible relationship with observed TO
in Sri Lanka with r = 0.03 and 0.06 for the full and land-only domains, respectively. Higher correlations
were obtained using dilute CAPE (0.15 and 0.17) but still nowhere near the level obtained with ML (0.29
and 0.37 using LGBM).

Finally, the statistical significance of the results was assessed by a bootstrap experiment using the test
data from N-EUR. A block bootstrap method was devised to account for the spatial and temporal corre-
lation (available at https://github.com/peterukk/BlockBootstrap3D.jl). The bootstrapped distributions of
AUROCLGBM−AUROCdiluteCAPE and AUPRLGBM−AUPRdiluteCAPE (using 8,000 bootstrap samples) were both
more than 28𝜎 above 0, meaning the null hypothesis of no skill difference can be rejected at any p value.

4.2. Diurnal Cycle
The successful application of ML in a convective parameterization depends not only on the accurate
prediction of means but crucially also on important aspects of observed variability of convection being
reproduced. Most convective parameterizations employed in large-scale models are based on an assump-
tion of quasi-equilibrium between the large-scale forcing (which acts to generate CAPE) and the response
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Figure 4. The diurnal cycle of observed thunderstorm occurrence, predicted thunderstorm occurrence by LGBM, and dilute CAPE as derived from the ERA5
hourly analysis, as well as 06 UTC forecast convective precipitation for hours 07–23 (by the ECMWF atmospheric model) for Northern Europe (top), Central
Europe (middle), and the land-only domain for Sri Lanka (bottom), using the independent test data. All products are hourly except in Sri Lanka, where only the
convective precipitation is hourly and the remaining variables were acquired at 2-hourly resolution. LGBM = LightGBM; CAPE = convective available potential
energy.

to this forcing as realized convection (which consumes CAPE). While mass flux schemes which assume
quasi-equilibrium can produce realistic middle-latitude synoptic variability and tropical wave spectra, the
simulated diurnal cycle of convection over land is often several hours ahead of the observed cycle, a
manifestation of nonequilibrium convection (Bechtold et al., 2014).

The diurnal cycle of observed and predicted deep convection (using TO as a proxy) as well as CAPE over
different domains is displayed in Figure 4. Also shown is the 06-UTC forecast convective precipitation by
the ECMWF model. ML predictions using LGBM match observations very well in all domains, although in
N-EUR the peak is slightly underestimated. While the phase of the diurnal cycle of CAPE is many hours
ahead of observed deep convection as expected, the ECMWF convective parameterization performs very well
in terms of the phase of precipitation matching that of observed lightning. This is due to an update in 2013 to
the closure used in the IFS convective parameterization which made it possible to represent nonequilibrium
convection realistically (Bechtold et al., 2014). While Figure 4 suggests that the deep convective activity in the
morning is still somewhat overestimated by the ECMWF model, this may be caused by comparing lightning
occurrence to the intensity of convective precipitation, which are not the same thing. Nevertheless, the same
can be seen also in an evaluation of the scheme over Europe and the Sahel region in Figure 5 in Bechtold et
al. (2014). This suggests that there may be room for improvement in the ECMWF parameterization. While
the results are certainly promising, it should be stressed that they are not based on a prognostic validation. A
reanalysis-based validation may in principle skew the results in favor of multivariate methods, for example,
when satellite observations of long-lived convective systems are assimilated. However, we found that the
relative improvement in AU-PR between dilute CAPE and LGBM was only slightly decreased when cases
with previous lightning activity were removed.
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Figure 5. The grid box means of dilute CAPE (top row), observed hourly thunderstorm occurrence (middle row) and
predicted 45-min thunderstorm occurrence by LGBM (bottom row) in Europe (left) and Sri Lanka (right) using test
data in Europe (May–August 2014, hourly data) and the test and validation data in Sri Lanka (2017, 2-hourly data).
CAPE = convective available potential energy; LGBM = LightGBM.

4.3. Correlation With Observed Thunderstorms on Larger Scales
Grid box means of observed TO and ERA5-derived convective predictors in Europe (2014, test data) and
in Sri Lanka (2017, validation and test data) are plotted in Figure 5. Regions of high thunderstorm activity
seem to correspond well with ML predictions in Europe. CAPE is elevated over the Baltic Sea relative to the
observed and predicted thunderstorm activity. In Central Europe, ML predictions are clearly better in the
east and southeast, where CAPE underpredicts convection. In Sri Lanka, the evaluation is hampered by a
small domain, but the LGBM output matches observed deep convection better than CAPE or the forecast
convective precipitation (not shown) which were both elevated over sea.
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Table 3
Linear Correlation Between Area Means of Monthly Means of Parameters in Europe
(May–August 2012–2017) and Sri Lanka (January–December 2016–2017), Where TO Refers
to the Observed (45 min) Thunderstorm Occurrence, vimfc Is the Vertical Integral of
Divergence of Moisture Flux, yLGBM Is the Output of the Boosted Decision Tree Model, cpfc Is
the Forecast Accumulated Convective Precipitation and C-G Flashes Is the Number of
Observed Cloud-to-Ground Flashes

y1, y2 N-EURsub C-EUR Sri Lanka
TO, CAPE 0.967 0.802 0.374
TO, dilute CAPE 0.905 0.851 0.417
TO, total column ice water −0.332 0.074 0.670
TO, vimfc 0.155 −0.173 −0.728
TO, cpfc 0.628 0.694 0.725
TO, yLGBM 0.989 0.951 0.944
C-G flashes, CAPE 0.9361 0.772 —
C-G flashes, cpfc 0.560 0.491 —
C-G flashes, yLGBM 0.959 0.783 —
C-G flashes, yLGBM× CAPE 0.949 0.858 —

Note. All means have been calculated using synoptic 2-hourly analyses, except cpfc which
was obtained as a daily mean created from contiguous hourly forecast data (initialized twice
a day). CAPE refers to CAPEMU, except for C-EUR, where CAPESFC was used due to lower
skill of CAPEMU in the Alpine region. Only correlations between the European domains
are comparable due to similar surface areas, obtained by using a northern subsection of
N-EUR (N-EURsub). The highest correlations for each domain and predictand are bolded.

Next, the regional means of monthly means of parameters were compared to observed TO and CG flash
totals in different regions. A strong relationship would enable the use of reanalysis data to infer climate
trends in the occurrence convective storms over the past 40 years or more. Linear correlation coefficients
between monthly values were calculated using all available data, which amounts to 24 months in each
domain (Table 3). In Northern Europe, the correlation between monthly mean CAPE and observed thun-
derstorm frequency is already remarkably high at 0.967, with limited room for improvement. With LGBM,
the correlation reaches 0.989. In C-EUR, CAPE has a lower correlation with observed monthly thunder-
storm activity (r = 0.80–0.85). ML predictions correlate strongly with observations in both C-EUR (0.95)
and Sri Lanka (0.94). The high correlations suggest that ERA5 and ML could be used to reconstruct past
thunderstorm activity globally. Individual predictors derived from ERA5 were less successful in Sri Lanka,
where CAPE correlates poorly with storm frequency also on larger scales (r = 0.37–0.42). Moisture flux
convergence may be a better predictor for storm initiation in the tropics (r = 0.73).

Finally, monthly total number of C-G flashes in Northern Europe has a strong correlation with CAPE (0.94)
and ML-predicted storm occurrence (0.96). In C-EUR, the best predictor for monthly C-G flashes is the
product of CAPE and ML model output. A likely explanation is that CAPE gives a theoretical upper bound
for the intensity of deep convection (for which C-G flash frequency is a proxy) but is conditional to convective
initiation, the probability of which is modeled by LGBM. The data used for Sri Lanka did not differentiate
between C-G and intracloud flashes, but the correlation between CAPE and mean monthly flash density
was 0.65–0.69 (not shown).

5. Environmental Factors Regulating Deep Convection
The use of ML, lightning, and reanalysis data offers an opportunity to assess the relative importance of
different variables for deep moist convection in different climates. Caveats here include the correlation of
features affecting the feature ranking and uncertainties associated with the use of reanalysis data. Specifi-
cally, the results may be sensitive to variable- and domain-dependent errors in the reanalysis. Nevertheless,
the use of a nonlinear statistical method and observations of lightning (which unlike precipitation, is always
associated with deep, moist convection) may be valuable for gaining insight into the environmental factors
controlling convection in the tropics and midlatitudes. Identifying such control variables observationally
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has been difficult according to Yano et al. (2013), who review this subject in the context of convective
parameterization.

First, in order to gain a more reliable estimate of feature importance, we conducted a further experiment
using the ELI5 python library (http://eli5.readthedocs.io) to measure the permutation feature importance of
the final NN and LGBM models. The method is based on measuring the decrease in score (here, valAP) when
the values of a feature are shuffled. For each domain, we then took the mean of the feature importances
for the two models (not shown). Overall, the ranking was similar to Figure 1, with stability indices having
high importance in Europe but not in the tropical region. One difference was that soil temperature received a
high score also in Europe, coming third after LIMU and LIML. In Sri Lanka, the three most important features
were soil temperature, soil water content, and the sum of cloud liquid water, rain, and snow. Low-level
convergence and wmid had a low score in both domains.

From our results we draw the following key findings:

• In Sri Lanka, regular (undilute) CAPE has a weak correlation with observed TO. This is consistent with
studies showing that tropical convection does not have any clear correlation with CAPE (e.g., Sherwood,
1999).

• Yano et al. (2013) stress that convection in the tropics, especially over sea, is instead controlled by humidity
in the low-to-middle troposphere. The larger relative importance of humidity arises due to weak horizontal
temperature gradients in the tropics which lead to low variability of undiluted CAPE. Our results are in
agreement with this: in Sri Lanka humidity variables had high feature importances, and accounting for
updraft dilution was very important.

• Column-integrated moisture and humidity in the low-to-middle troposphere were important thunder-
storm predictors also in Europe. For example, relative humidity in the 600- to 800-hPa layer greatly
increased the probability of lightning, also for large values of CAPE. This parameter may be a simple yet
effective way of accounting for the effect of environmental humidity on deep convection through mixing
and the associated shallow-to-deep convection transition (Ukkonen et al., 2017; Wu et al., 2009).

• The importance of CIN for observed deep convection (or lack thereof; see section 5.5 Yano et al., 2013) is
difficult to establish. We did not include CIN as it is traditionally defined below the LFC. CIN below the
LCL, and the sum of CAPE and CIN in a 250-hPa-thick layer above the LCL, performed fairly well in both
domains. In Sri Lanka, thunderstorm probability increased monotonically with the latter parameter but
not with undilute CAPE.

• According to Mapes (1997), the importance of CIN and other “low-level controls” on deep convection
depends on the scale of the convective systems, so that convection on larger scales responds to changes in
instability by large-scale processes and CIN is unimportant. On the mesoscales, the spatial organization of
convection (into arcs or lines) is governed by PBL processes which act to reduce CIN and provide low-level
lift by which CIN can be overcome. From this, it should follow that the monthly mean convective activity
over large areas has a high correlation with CAPE, but individual thunderstorms can be more skillfully
predicted by a multivariate model. This was clearly the case in Northern Europe, where CAPE was suffi-
cient to capture monthly thunderstorm frequency. However, In Central Europe and especially Sri Lanka,
ML predictions had a much higher correlation with monthly TO than any large-scale variable. This sug-
gests that estimates of future changes in convective storms need to also consider storm initiation (governed
by many factors) and not only changes in conditional instability.

• Thunderstorm probability for the same very favorable values of CAPE, CIN, and MRH600–800 was much
higher in Europe than in Sri Lanka. Assuming that this result is physical, a possible explanation may be the
temperature dependence of buoyancy reduction through mixing. For similar values of relative humidity,
the magnitude of evaporation occurring when updraft air is mixed with the environment is much larger
in higher temperatures.

6. Discussion and Conclusion
In this paper, we have explored the use of ML to predict the occurrence of deep convection in different
climates. Models were trained using lightning data and a high-resolution global reanalysis. Considerable
effort was devoted to improve model performance, generalization, and interpretation. First, atmospheric
profiles were not used directly as inputs; instead, a large number of convective parameters were calcu-
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lated and evaluated. Second, Bayesian optimization was utilized for efficient and systematic tuning of
hyperparameters.

Classifier skill for short-term thunderstorm predictions (0–45 min), as measured by the area under the
PR-curve, was more than doubled in Europe by using NNs or boosted trees instead of CAPE. These models
performed very well also in Sri Lanka, where convective indices did not. The relationship between undi-
lute CAPE and TO was very weak in this region. Regarding the choice of model, we note that decision
tree ensembles were able to offer similar performance to deep NNs, probably due to successful feature
engineering.

Our results suggest several promising future applications. First, findings regarding the most skillful algo-
rithms and predictors for short-term prediction of convective initiation should be relevant for nowcasting
purposes. Second, the realistic diurnal cycle of ML-predicted TO in both Europe and Sri Lanka indicates
feasibility for predicting the onset of deep convection in the context of convective parameterization. An
ML-based convective trigger could rectify biases in the diurnal cycle of precipitation, which have been found
in CMIP5 models (Harding et al., 2013) as well as in a new-generation Earth System Model (Zhao et al.,
2018). Since ML classifiers predict class probabilities, one could be implemented as a stochastic triggering
parameterization in a GCM, potentially improving the variability of simulated convection in tropical regions
(Rochetin et al., 2014).

Finally, an almost perfect linear relationship was found between area-mean monthly TO and predictions
using ML and ERA5 data. In Northern Europe, CAPE alone was able to explain the monthly variability. The
results suggest that reanalyses and ML could be used to study climate trends in convective weather around
the globe. This is important, as the impact of climate change on storm initiation is an unanswered question
(Allen, 2018). While the sample used was small (24 months), the high performance of a single NN across dif-
ferent climates (section 3.2.2) suggests applicability also for longer time periods. Despite NN being unable
to extrapolate to completely new climates, there is evidence that they can interpolate in between extremes
(Rasp et al., 2018). Similarly, RFs in Gorman and Dwyer (2018) were able to generalize to a new regional cli-
mate as long as similar temperatures from a different region had been sampled during training. A potentially
bigger issue with reconstructing past convective weather in this manner may be the impact of changes to the
observing system, which inevitably introduce some uncertainty to calculated trends. However, such issues
are alleviated by variational bias correction and other significant efforts to minimize nonclimatic influences
in reanalyses; indeed, the primary aim of reanalysis has always been to provide a homogeneous record of the
atmosphere (Dee et al., 2011). In any case, this issue is much more serious for direct records of convective
weather.

Recent studies show that ML models are able to learn the underlying physical relationships governing sub-
grid convection effectively and are computationally efficient once trained. While challenges remain, subgrid
parameterizations learned from CRM or convection-permitting RCM data could greatly improve GCMs
in the coming years. In the future, parameterizations could be learned directly and sequentially (online
learning) from assimilated observations and replace or complement traditional schemes. While advances in
learning algorithms and data assimilation may in some cases be needed before the key physical variables in
parameterizations can be assimilated and learned, it would already be possible to implement a classification
model like ours which learns to predict lightning occurrence in a global NWP model.
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